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ABSTRACT
Embodied interactive agents possessing emotional intelli-
gence and empathy can create natural and engaging social
interactions. Providing appropriate responses by interactive
virtual agents requires the ability to perceive users’ emo-
tional states. In this paper, we study and analyze behavioral
cues that indicate an opportunity to provide an empathetic
response. Emotional tone in language in addition to facial
expressions are strong indicators of dramatic sentiment in
conversation that warrant an empathetic response. To au-
tomatically recognize such instances, we develop a multi-
modal deep neural network for identifying opportunities
when the agent should express positive or negative empa-
thetic responses. We train and evaluate our model using
audio, video and language from human-agent interactions
in a wizard-of-Oz setting, using the wizard’s empathetic re-
sponses and annotations collected on Amazon Mechanical
Turk as ground-truth labels. Our model outperforms a text-
based baseline achieving F1-score of 0.71 on a three-class
classification. We further investigate the results and evaluate
the capability of such a model to be deployed for real-world
human-agent interactions.
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1 INTRODUCTION
Emotionally intelligent and embodied interactive agents are
showing great promise for effectively augmenting human
resources in different domains including health-care and ed-
ucation. To create a realistic and engaging experience, it is
necessary for the agents to be receptive and responsive to the
users’ emotional needs. There has been a large body of work
in multimodal recognition of sentiment and human emotions
from online videos or interactive experiences [7, 8, 29]. Ex-
isting work have made notable progress towards sentiment
recognition from vast online datasets. Nonetheless, despite
the increasing attention towards emotionally intelligent and
empathetic interactive companions, recognition of empathy
has not been extensively explored due to limited amount of
data and the complexity of defining ground-truth labels.
Empathy is defined as the ability to recognize, under-

stand and react to emotions, attitudes and beliefs of others
[1]. Automatic recognition of empathy, although similar to
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sentiment, requires a different and more complex model-
ing. Recognition of opportunities for empathetic responses
should include subjectivity while also accounting for the
intensity of the sentiment to elicit empathetic responses.
The threshold for expressing empathetic responses can vary
from person to person and is also affected by inter-personal
relationships and the context of the conversation. “I am con-
cerned about global warming.” and “I lost mymother to cancer.”
are expected to elicit different responses in terms of empathy.

Multimodal sentiment analysis relies on the perception of
proxies of sentiment or affect from different views including
verbal content or spoken words, emotional tone of speech
and facial expressions. In this work, building upon the work
on multimodal sentiment analysis, we propose a multimodal
machine learning framework for identifying opportunities
for empathetic responses during human-agent conversations.
To this end, we analyzed interactions between an agent and
a user during a semi-structured interview probing symp-
toms of mental health disorders such as depression. During
the interview, the agent asks a set of questions, where each
question is possibly followed by shorter follow-up questions
with respect to the user’s previous responses. Our developed
model determines when the agent needs to express empathy
and with what polarity, i.e., a positive or negative empathetic
response. We focus on the prediction of empathy in an un-
controlled environment with real-world users, throughout
the human-agent dialogue interaction.

The problem is therefore formulated as a three-class clas-
sification of positive, negative or no response using verbal,
acoustic and visual modalities. Each modality is mapped
to a representation which is used to recognize the classes.
We evaluated the unimodal and multimodal recognition re-
sults with two sets of labels, one consisting of the real-time
judgments of the experimenters and one according to the
judgments of the independent observers. Identifying such
moments will enable the agent to provide an empathetic re-
sponse such as “I’m sorry” or “that’s great” when necessary.

The major contributions of this work include:

• An analysis of verbal and nonverbal behaviors prompt-
ing empathetic responses.

• Providing a machine learning framework for identify-
ing empathetic opportunities in an uncontrolled dyadic
interaction with real-world users.

• An analysis of different strategies for creating ground-
truth labels for empathetic responses.

2 RELATEDWORK
The development of emotionally intelligent and empathetic
agents have been a long-standing goal of AI. Bickmore [5]
showed how embodied agents can employ empathy to form

better social relationships. Brave et al. [6] shows that empa-
thetic emotions lead to greater likeability and trustworthi-
ness of the agent. Existing work have mostly examined empa-
thetic interactions through game-playing contexts [4, 6, 23].

Others have looked at prediction of counselors’ empathy
measures in domains like motivational interviewing [34, 35].
They have used ratings of empathy as means of evaluating
psychotherapy sessions and counselor performance. Clavel
and Callejas [10] surveyed sentiment analysis and its ap-
plications to human-agent interaction. They found that the
existing sentiment analysis methods deployed in human-
agent interactions are not designed for socio-affective inter-
actions. Hence, they recommend building systems that can
support socio-affective interactions in addition to enhancing
engagement and agent likability.

Sentiment analysis usually focuses on recognizing the po-
larity of sentiment expressed towards an entity [32]. Learn-
ing empathetic opportunities in interactive systems requires
more than mere recognition of polarity, since empathetic re-
sponses are in response to personal misfortunes or successes
and not just any emotionally charged utterance.
Recent multimodal sentiment analysis approaches use

deep neural networks trained and evaluated on social media
videos to detect sentiment. Zadeh et al. [37] used a Tensor
Fusion Network to model intra-modality and inter-modality
dynamics in multimodal sentiment analysis. Their tensor fu-
sion network consists of modality embedding sub-networks,
a tensor fusion layer modeling the unimodal, bimodal and tri-
modal interactions using a three-fold Cartesian product from
modality embeddings along with a final sentiment inference
sub-network conditioned on the tensor fusion layer.

Hazarika et al. [20] propose a conversational memory net-
work for emotion recognition in dyadic interactions, consid-
ering emotion dynamics. They use Gated Recurrent Units
(GRUs) to model past utterances of each speaker into memo-
ries to leverage contextual information from the conversation
history. Majumder et al. [24] models emotions in conversa-
tions by distinguishing individual parties throughout the
conversation flow. They consider three major aspects in dia-
logue by modeling individual party states, context from the
preceding utterances as well as the emotion of the preceding
utterance by employing three GRUs. Their network feeds
incoming utterances into two GRUs called Global GRU and
party GRU to update the context and party states respectively.
The global GRU encodes corresponding party information
while encoding an utterance. By attending over the global
GRU, the model represents information from all previous
utterances and the speaker state. Depending on the context,
information is updated and fed into the emotion GRU for
emotion representation.
Existing work mostly leverage online datasets that bene-

fit from large amounts of data [9, 27, 28, 30], or use highly
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Figure 1: A participant and the virtual agent, Ellie.

curated offline datasets that adopt professional actors for
predefined and highly expressive scenarios [25, 30, 33]. In
this paper, we focus on real-world data obtained from people
talking with a virtual agent in a semi-structured interview
imitating a therapy session. This is an inherently challeng-
ing domain due to limited amount of real-world data with
relatively lower expressiveness and unstructured spoken
dialogue.

3 DATA
We use a portion of the Distress Analysis Interview Corpus -
Wizard-of-Oz (DAIC-WOZ) for training and evaluating our
method. DAIC-WOZ is a subset of DAIC that contains semi-
structured interviews designed to support the assessment
of psychological distress conditions such as depression and
post-traumatic stress disorder (PTSD) [19]. The interviews
were collected as part of an effort to create a virtual agent
that conducts semi-structured interviews to identify verbal
and nonverbal indicators of mental illness. The subset of
the corpus examined in this work include the Wizard-Of-Oz
interviews conducted by a virtual agent controlled by two
trained humanwizards in a separate room. In this two-wizard
arrangement, one wizard controlled the the agent’s verbal
behavior while the other handled her nonverbal behavior.
The interview was structured to start with a set of general
rapport-building questions and continue to query potential
symptoms of mental health such as quality of sleep. In this
setup, a fixed set of top-level questions were provided to the
wizard to be asked during the interview. In addition to asking
the top-level questions, the wizard was provided with a finite
repertoire of response options to act as a good listener by
providing back-channels, empathy and continuation prompts
[13] (see Figure 1).
Verbal and nonverbal behavior of participants were cap-

tured by a front-facing camera and head-worn microphone.
In this work, we extract segments eliciting empathetic re-
sponses from the experiments by looking at the agent’s ex-
pressions of empathy such as “I’m sorry to hear that.” or

Table 1: Human-Agent dialogue excerpts with different em-
pathy responses.

Dialogue Excerpt

Negative

A: How have you been feeling lately?
H: Um kind of uh I guess sorta sorta depressed
generally
A: Tell me more about that
H: Uh just uh feeling tired and sluggish and
um less less motivated and less interested in
things
A: I’m sorry to hear that.

Positive

A:What are you most proud of in your life?
H: Uh I’m proud that I’ve come a long way
from when I first moved out here
I’m uh a lot more disciplined um I read a lot
uh I do crosswords and I think I’ve I think I
know what’s important in life now and
I’m more focused and going after what I want
A: That’s so good to hear.

None

A:What are somethings you wish you could
change about yourself?
H: Um I wish I could be taller I wish I could
be more inclined to play basketball so I then
become go to the NBA and be a millionaire I
know that’s all unrealistic but just answering
honestly.

“That sounds like a great situation.”. In the segmented data,
each instance consists of the participants’ verbal and non-
verbal (audiovisual) responses to each main question and
the follow-up questions. Follow-up questions such as “Can
you tell me more about that?” were asked to elicit further
disclosure and encourage more elaborate responses. Example
dialogue excerpts are shown in Table 1.
Due to the nature of the predefined semi-structured in-

terview, the dialogue turns take minimal influence from the
dialogue history and are therefore considered independently.
The data is segmented into small time-windows consisting
of the users’ transcribed text, video and audio that have re-
sulted in either positive, negative or no empathetic responses
from the virtual agent.

Overall, we had 2185 data points extracted from conversa-
tions of 186 participants. The average length of the dialogue
excerpts was 30.6 seconds, while the average number of turns
per data point was 3.2 turns.

4 METHOD
Multimodal Feature Extraction
Textual Features. For text input, we use a pre-trained lan-
guage representation model called Bidirectional Encoder
Representations from Transformers (BERT) [14]. BERT has
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Figure 2: Multimodal static fusion.

substantially advanced the state-of-the-art in a number of
natural language processing (NLP) tasks including sentiment
analysis and question answering, which also makes it suit-
able for this task. We therefore used BERT as our text em-
bedding model using only the participants’ utterances from
the dialogue excerpts. We avoid using the agent’s utterances
in the classification because of the unfair advantage it may
provide to the recognition model. We took Uncased BERT-
Base to obtain a single 768-dimension vector representation
of the transcribed text per data entry [36]. BERT encodes
the whole text sequence into a fixed-size vector, and unlike
audiovisual modalities, the temporal dimension is latent in
the text representation.

Audio Features. Two types of feature-sets were extracted
for the representation of speech prosody: (i) the extended
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) and
(ii) Mel-frequency cepstral coefficients (MFCC), extracted
using OpenSMILE [18].

eGeMAPS provides a set of acoustic features hand-selected
by experts for their potential to detect affect in speech, and
has been widely used in literature due to their performance,
as well as theoretical significance [16]. This feature-set con-
sists of 23 features such as fundamental frequency and loud-
ness. MFCCs represent 13 band mel-frequency cepstral co-
efficients (MFCC) computed from audio signals from 25ms
audio frames. MFCCs and their first and second order deriva-
tives were extracted [17, 18] to obtain a temporal matrix of
T × 39 representation per data entry.

Visual Features. For the visual representation, we experi-
mented with two different feature-sets: (i) 17 action units
and 6 head pose features were extracted per frame using
OpenFace [3] and (ii) face embedding obtained from a ResNet
pre-trained model [21]. OpenFace is used to extract the inten-
sity of facial action units, representing 17 action units based
on the Facial Action Coding System (FACS) [15] along with
head pose variations per frame, therefore providing a T × 23

representation. For the face embedding, we extracted masked
and aligned faces per frame using OpenFace [2] and fed it
to ResNet-50, a convolutional neural network pre-trained
on ImageNet [12], and extracted the representation from the
penultimate layer, to obtain a T × 2048 representation.

Ground-Truth Labels
Wizard judgments. Weextracted the ground-truth labels from
the empathetic and non-empathetic responses of the human-
controlled virtual agent. The agent’s responses are divided
into three classes: negative empathy, positive empathy or no
empathy. Negative empathetic responses include utterances
such as "That sounds really hard" and "I’m sorry to hear that",
positive empathy includes utterances like "That’s so good to
hear", "That sounds like a great situation", and no empathetic
responses shows that the agent moved on to the next ques-
tion or expressed fillers or back-channels without sentiment.
By using these key phrases, we extracted the ground-truth
labels for the three classes.

Mechanical Turk Ratings. To validate the wizard’s empathetic
responses, we collected labels via Amazon Mechanical Turk
(MTurk). We recruited five raters per instance (257 unique
participants), all from the United States to avoid language
barriers. For each data point, the users were given the tex-
tual data, i.e., the dialogue sequence and they were asked to
select the proper categorical response toward the user at the
end of each conversation. For further clarification, we pro-
vided example responses belonging to each category. Each
assignment consisted of 20 tasks (data points) plus two con-
trol questions (with obvious responses) to eliminate raters
that did not pay attention to the task and provided random
answers. One control question contained an obviously dev-
astating story about the participant’s mother passing away
while the other control question involved a very happy and
inspiring story about the participant. We repeated the ex-
periment on data points with wrong answers to either of
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Figure 3: Box plots of verbal and nonverbal behavior with significant differences among different classes.

the control questions to obtain valid ratings. We additionally
eliminated the instances where there was no majority vote
among raters (7% of the data).
The Fleiss’ kappa was calculated to measure inter anno-

tator agreement for the entire data across five raters which
showed fair agreement withκ = 0.33. A comparison between
the majority vote of the MTurk raters and the wizard’s re-
sponses, shows 58% agreement. More analysis indicates that
the difference is mainly caused by MTurk raters annotating
certain entries as either positive or negative where there
was in fact no empathetic response by the wizard. This is
likely the result of the raters looking at data entries inde-
pendently and not as part of an entire dialogue. Therefore
the wizard may not have expressed empathy where it was
fit, to avoid redundancy of such expressions throughout the
interaction. The low inter-rater agreement from MTurk an-
notations demonstrates the intrinsic complexity of the task,
which speaks well to the nature of empathy as a social con-
struct and the empathy level of the person expressing it.
Furthermore, the task becomes more difficult due to the indi-
vidual differences across the annotators with respect to their
own personal experiences and self-identification with the
user.
Table 2 shows the distribution of data across different

classes. Throughout the experimentation, we evaluate and
report the results for both sets of labels to address this dif-
ference between the sets of labels.

Table 2: Distribution of classes for two sets of labels

Negative Positive None

Wizard 20.6% 40.6% 38.8%

MTurk 24.9% 46.0% 29.1%

Behavior Analysis
To study the verbal and nonverbal indicators associated with
instances of behavior that elicit empathetic responses, we
used interpretable features from each modality for investi-
gating such associations. For vision, we used facial action
units, for speech, we opted for eGeMAPS features and for
language we used LIWC to gain a better understanding of
the social predictive signals of empathy. Linguistic Inquiry
and Word Count (LIWC) is a dictionary-based tool that gen-
erates scores along different dimensions including linguistic
variables such as number of conjunctions and pronouns and
affective and cognitive constructs [26].

After selecting a set of features, we ran one-way analysis
of variance (ANOVA) and visually inspected the box plots
of significant results (p < 1E − 5). The behavioral features
that stood out are shown in Figure 3. We could not observe
any visible differences among audio features. The sentiment
of language, tone, positive (posemo) and negative emotions
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Figure 4: Multimodal RNN fusion.

(negemo), according to LIWC are strong indicators of sen-
timent for recognizing empathetic response opportunities.
The language used in describing less pleasant situations is
more formal which might show that participants were less
comfortable sharing them. Social processes including men-
tioning family members was higher during the description
of negative experiences, pointing toward interpersonal is-
sues. Cognitive processes (cogproc) which involve describing
causation, certainty and insight were lower for positive in-
stances which demonstrate that the expressions of positive
experiences were in simpler language.
Action units associated with positive expressions, AU06

(cheek raiser) and AU12 (lip puller), are strong indicators of
positive sentiment. AU15 or lip corner depressor that is asso-
ciated with sadness also showed stronger activation during
negative instances. This demonstrates that visual features in
addition to verbal behavior might be able to assist the recog-
nition of sentiment for providing empathetic responses.

Model Architecture
Unimodal models. For every modality an encoder maps its
input representations to a fixed-size vector or embedding.
In unimodal classification, each of these encoders is then
followed by a softmax layer for three class classification.

Language information is encoded with instance-based en-
coders. These encoders consist of a single fully connected
(FC) layer of a fixed size. Sequences of audio and visual fea-
tures were fed to a single layer gated recurrent unit (GRU)
that maps the vision and speech representations to a fixed-
size embedding, keeping only the last state. The obtained
representations from unimodal encoders are followed by a
softmax layer for classification. Additionally, we developed
a multimodal model that fused the aforementioned encoders,
described below.

Static fusion. In this architecture, features from different
modalities are initially passed through unimodal encoders,
and their resulting embeddings were concatenated and fed
into a fully-connected fusion layer followed by a softmax

classifier. The structure of this static fusion network is illus-
trated in Figure 2.

RNN Fusion. Similar to the static fusion model, the RNN fu-
sion architecture initially produces unimodal embeddings
for each modality. However, in case of vision and audio, with
RNN encoders, the temporal embeddings learned through
single-layer GRUs, are concatenated and fed into an RNN
fusion layer consisting of a single-layer GRU. The text embed-
ding is then concatenated with the output from the last state
of the RNN fusion layer and fed to a single fully-connected
layer for final fusion (static). The output is finally passed
through a softmax classifier for three class classification. The
RNN fusion network structure is shown in Figure 4.

Experimental Setup
In this work, we evaluate our methods on a dataset of 2185
instances of conversation excerpts from 186 participants.
Given the size of the dataset at-hand, we opted for a simpler
neural network architecture that can capture the patterns as-
sociated with empathetic responses while generalizing well.
The model takes temporal audio and video input features per
data entry and a single representation vector for text. We
discard all data shorter than 1.5 seconds and apply random
cropping of a 90-second window for long video and audio
inputs (average length of the data is 90 seconds), during train-
ing. During evaluation a middle segment with max duration
of 90 seconds is extracted.

For each modality, we designed an encoder network map-
ping the input feature space to a 128-d embedding space.
In both architectures, video and audio inputs are fed sepa-
rately into two 1-layer GRUs to obtain individual embeddings
for both modalities. Only for ResNet due to the higher di-
mensionality of the original space, we added a 128-d fully
connected layer after GRU. For textual data, the BERT vector
representation is fed into a fully-connected layer to obtain
a compact representation, reducing the feature dimensions
from 768 to 128. The embeddings from all modalities are
consistent across the two fusion networks. The two models

100



Multimodal Learning for Empathetic Responses ICMI ’19, October 14–18, 2019, Suzhou, China

employ different fusion architectures: (i) static fusion model
uses the concatenation of the three embeddings and feeds
the multimodal representation vector to a fully-connected
layer, with a dropout value of 0.2, to obtain a final vector of
size three, containing the probabilities among three classes.
A softmax classifier is then adopted to perform the classi-
fication (ii) RNN fusion model initially fuses the temporal
video and audio sequences using a GRU of size 128 and
then concatenates the bimodal representation with the text
embedding. Similar to the static fusion network, the mul-
timodal representation is fed to the fully-connected layer,
with a dropout value of 0.2, obtaining the final probability
vector on which a softmax classifier performs the classifica-
tion. A cross-entropy loss is used in this setup with a weight
vector, learned from the train set, to account for the data
imbalance and the evaluation results are computed using
micro F1-score. A 10-fold cross-validation has been used for
training and evaluation of the dataset. We optimize the net-
work using Adam, with a batch size of 32 and a learning
rate of 10−4. 20% of training data is held out in each itera-
tion for validation, and the best performing model on the
validation set is selected. In the case of multimodal models,
the encoders and fusions layers are all trained jointly for 100
epochs.
Since there is no prior work whose results are directly

comparable with our work, we compare our results against a
text-based sentiment analysis method, given the similarities
between our problem and classical sentiment analysis. For
our text baseline, we use Valence Aware Dictionary and
Sentiment Reasoner (VADER) which is a lexicon and rule-
based sentiment analysis tool [22].

5 RESULTS AND DISCUSSION
To inform our design decisions for the multimodal networks,
we initially trained and evaluated unimodal classifiers using
different feature-sets. The results from unimodal classifica-
tion, evaluated by micro F1-scores are shown in Table 3.

Unimodal classification results demonstrate the superior-
ity of text in content representation and predictive power,
exceeding performance from visual and audio modalities.
This result is consistent with prior work on multimodal sen-
timent analysis [28, 37], and extenuated by the real-world
setting and low expressiveness of this interactive scenario.

The multimodal networks are trained on the best perform-
ing feature-sets from each modality, meaning ResNet for
video representation, MFCCs for audio and BERT for lan-
guage. The audio representations had low predictive power
for both MFCC and eGeMAPs on unimodal classifications,
whichmay be the result of audio quality and recording.When
training themodels withMTurk annotations, the results from
the multimodal networks show an increase in performance
using the RNN fusion model, which speaks to the existing

Table 3: F1-scores for three-class classification.

Features/Models MTurk Wizard

Audio
MFCC 0.38 0.36

eGeMAPS 0.37 0.35

Video
AU+Pose 0.38 0.35

ResNet 0.46 0.43

Text BERT 0.64 0.61

Multimodal
Static Fusion 0.69 0.61

RNN Fusion 0.71 0.61

Baseline VADER - text 0.58 0.44

temporal inter-dynamics of audio and video captured by this
network. The multimodal networks gain an overall advan-
tage over the textual unimodal network which is the highest
performing unimodal classifier in this task (see Table 3).
Our unimodal text classifier outperforms the text senti-

ment baseline. Using the recommended threshold on com-
pound sentiment score, i.e., 0.05 for VADER, a text-based
sentiment analysis achieves F1 = 0.58 for MTurk labels and
F1 = 0.44 for wizard labels. We also tested the sensitivity of
the threshold value and found that the best possible results
are only slightly different (see Figure 5). Hence, our text-
based method using BERT comfortably outperforms VADER
results which further validates our approach.

0.2 0.4 0.6 0.8
Threshold

0.40

0.45

0.50

0.55

0.60

F1
-s

co
re

label
MTurk
Wizard

Figure 5: F1-scores of VADER sentiment analysis with differ-
ent thresholds.

The results demonstrate that model predictions are higher
when trained on MTurk labels for both multimodal and
unimodal classifications. The aggregate of labels from five
annotators provide higher reliability and potentially lower
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between-person variability. Additionally, the wizard has an
understanding of conversation context and may experience
different inter-personal connections to the story or person
that would affect the empathetic responses beyond the ability
of our model.

The column-wise-normalized confusion matrices for RNN
fusion model across wizard and MTurk ratings are shown in
Table 4. The results show similar patterns for both labels and
indicate that false predictions are mainly mis-classifications
of either positive and negative responses with no empathy,
i.e., , prediction of positive/negative responses where none
was necessary or predicting no empathy where positive em-
pathy would have been a better response. To deploy such
a system in real interactions, high precision in detection is
necessary, as confusion of positive and negative responses
will disrupt the interaction. Examples of the model’s predic-
tions on MTurk labels are shown in the Table 5. Instances
like the second entry are dependent on the personalities
and inter-personal relationships of the interlocutors. How-
ever, instances like the third entry can be disruptive to the
interaction and require further attention.

Table 4: Confusion matrices (RNN fusion).

Predictions

Negative Positive None

MTurk
Labels

Negative 72.12% 4.15% 11.43%

Positive 9.85% 78.44% 30.60%

None 18.03% 17.41% 57.97%

Wizard
Labels

Negative 49.65% 1.59% 12.02%

Positive 14.24% 74.87% 30.80%

None 36.11% 23.54% 57.18%

6 CONCLUSIONS
In this paper, we reported on our efforts in automatic recog-
nition of opportunities for providing empathetic responses.
To this end, we labeled and analyzed a dataset of human-
agent interactions in the context of a semi-structured inter-
view. Our analysis demonstrated that facial expressions of
emotions and verbal content are the important channels for
recognizing such opportunities.

We developed and evaluated a deep neural network capa-
ble of multimodal learning of such opportunities. The best
unimodal result was achieved by encoding language with a
Transformer network (BERT) pre-trained on a large amount
of data and performing classification. Fusing the verbal chan-
nel with facial expressions, our recurrent neural network

Table 5: Instances of RNN Fusion model’s correct/incorrect
predictions on MTurk labels (Positive, Negative, None).

Dialogue Excerpt Prediction/Label
A: What got you to seek help?
H: Mymoodwas just not right I was al-
ways feeling down and depressed and
lack of energy always wanting to sleep
um lack of interest

Neg/Neg

A: What’s your dream job?
H: Designing for the movie industry
A: How hard is that?
H: Extremely so I never really pursued
it

Non/Neg

A: What do you do when you’re an-
noyed?
H:When I’m annoyed you know I re-
ally don’t get annoyed that much I just
let it go it’s not worth the pain and
problems they could cause if I can’t
straighten out a problem let it go

Neg/Pos

fusion provided the best result of F1 = 0.71 which is compa-
rable to the recent work on multimodal sentiment analysis
[37].
Analysis on two sets of ground-truth labels from the ex-

periments and independent observers, showed that empathy,
similar to other social constructs, may suffer from indistinct
boundaries that can be affected by inter-personal relation-
ships and individuals’ personalities.

As part of future work, to prepare this framework for real-
time use, we will optimize the current model for precision on
positive and negative classes, while assigning higher empha-
sis on instances with unanimous labels among annotators.
Ultimately, such models should be able to model individual
differences by choosing an adaptive threshold for providing
empathetic responses.
Embodied virtual agents and social robots that can emo-

tionally engage their users have a huge potential in multiple
domains including healthcare and education [11, 31]. With
this work, we provide a blueprint for developing empathetic
machines.
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