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ABSTRACT
High-Stress interactions include cases in which decisions must be
made, communicated, and agreed upon in a short amount of time
to avoid dire consequences. Such interactions can be a source of
different multimodal signals indicating participant cognitive and
emotional states, which can vary with factors such as the difficulty
of the interaction. By utilizing behavioral cues, a multimodal deep
neural network (with audio, video, and text modalities) was de-
veloped to predict the performance of users in these interactions.
An ablation study was conducted to compare impact of different
modalities. Our best model can predict the user performance with
73% accuracy in a 3-class classification task.

CCS CONCEPTS
• Human-centered computing → HCI design and evaluation
methods; Empirical studies in HCI ; Laboratory experiments; •Com-
puting methodologies→ Neural networks.
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1 INTRODUCTION
The personality of interlocutors can play a profound role in shaping
the structure and dynamics of the conversation. Numerous studies
have delved into the intricate relationship between personality
and character traits in dialogue systems, and how tailoring the
behavior of one interlocutor based on the personality profile of the
conversant can result in superior outcomes [21, 27, 30, 38].

However, the majority of interactions examined in prior research
have been conducted in low-stress contexts, such as during a ca-
sual conversation or while engaging in specific tasks without the
imposition of time constraints. To build upon this existing knowl-
edge and explore the impact of these emotional connections in
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Figure 1: Overview of the simulation environment, the
spokesperson, and the operator (aka the user)

more demanding scenarios, this paper investigates the dynamics of
human-virtual character interactions within a high-stress environ-
ment. Specifically, the study focuses on the ability of participants to
perform a critical task, namely rescuing residents from a fire-rescue
scenario, while simultaneously developing and maintaining rapport
with a virtual character.

Our objective is to develop a predictive model for the outcome
(aka user’s performance) in time-sensitive scenarios, utilizing mul-
timodal signals (audio, video, and text) acquired during interaction
windows. We analyzed data from Chaffey et al. [4], in which human
participants in a disaster relief scenario act as Operator of a robot
swarm and seek out and engage with diverse synthetic individuals
(residents), to convince them to evacuate, in an attempt to save
them from an approaching fire (Figure 1). This model will serve as a
valuable tool for evaluating a user’s ability to act efficiently and in-
fluence others under stressful conditions and time constraints. The
results will provide insights into the complex interplay between
multimodal signals and performance in time-sensitive scenarios.

2 RELATEDWORK
Multimodal behavioral analysis has been used in multiple domains.
In the cognitive science domain, research has shown that sequence
learning and multimodal behavioral analysis can be used as a tool
to assess human behavior towards learning ability, temporary mem-
ory and attention [1, 15, 25]. For an individual to perform well in
a cognitive task, paying attention and being engaged in the task
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Table 1: An interaction example drawn from the data: Inter-
action between a stubborn person with the operator.

Speaker Dialogue Utterance

Resident Hello?
Operator Hey, what’s going on? Are you okay? I need you to

evacuate right now. Immediately. You’re in danger.
Resident I’m not leaving my home. I have too much work here

to just leave it all behind.
Operator No, no, no. You’re going to leave right now. There’s a

fire. Do you understand? You need to leave right now.
Resident I’ve spent years on my collection, and there isn’t time

to take it all.
Operator I understand that. Listen! You have to go, sir. You have

to. Please listen. Your life is in danger.
Resident You really think it’s that bad?
Operator It’s very bad. It’s spreading really fast.
Resident Okay, I’m not stupid, just let me grab my bag and I’ll

head out.
Operator Okay, thank you, sir

are crucial. Previous research has investigated the relationship be-
tween attention, task engagement, and human emotions expressed
through bodily and facial expressions [3, 11, 36]. In [1], the authors
propose a multimodal approach for cognitive task performance
prediction from body postures, facial expressions and EEG signals.

Many applications include tasks of sentiment analysis and sen-
timent prediction of a user. These include studies that have com-
bined visual and audio features [7, 35], speech content [22, 32], and
even physiological signals to recognize emotions [26]. In [16], the
authors have focused on “Comfortability", an “internal state that
focuses on the person’s desire to maintain or withdraw from an in-
teraction". They have proposed several multimodal classifiers (with
various facial and upper-body movements as input) to recognize
the comfortability of humans in a Human-Robot interaction. In
[32], a multimodal deep neural classifier was proposed to predict
the best times for an agent’s empathetic response in a human-agent
interaction. They argue that emotional tone in language in addition
to facial expressions are strong indicators of dramatic sentiment
in conversation that warrant an empathetic response, and there-
fore they are using visual, audio and language modalities in their
prediction model.

3 DATA
The data used is from an experiment first designed and introduced
by Chaffey et al. [5]. The study included 31 participants recruited
through Craigslist (age range 22-49 with an average age of 29, 19
male and 12 female, from a range of ethnicities.) We briefly describe
the overall scenario, the recorded data and the performance metric.

Scenario. The simulation presents a dynamic scenario where
human participants (playing the role of operator) are tasked with
rescuing residents from a small town threatened by an imminent
wildfire. During the simulation, the operator is under severe time
constraints to evacuate all residents before the fire engulfs their
location. To evacuate each resident, the operator must first locate
them and then convince them to either follow a drone to safety or
use an evacuation vehicle for those in need physically. The operator

controls a swarm of drones that can search for the 5 residents who
are located randomly in the simulationmap. To facilitate controlling
the swarm and reduce the cognitive load associated with managing
them, the operator also has access to a virtual assistant (spokesper-
son). The spokesperson can translate the high-level instructions from
the operator (in natural language) into step-by-step commands to
the drones and the evacuation vehicles. Finding the right tasks to
delegate to the spokesperson is a crucial part of a successful evac-
uation, as an operator is unlikely to have the time and cognitive
resources needed to do everything themselves. The simulation en-
vironment provides a real-time map of the town that shows the
location of the drones and the evacuation vehicle, the areas that
have already been searched, the fire’s location, and the whereabouts
of any rescued residents. Figure 1 illustrates an overview of the
simulation environment, the spokesperson, and the operator.

Resident Interactions. The recorded information from the in-
teractions contains a complete log of simulation events, residents’
dialogues, the Operator’s performance in terms of the number of
rescued residents, their frontal video of the operator, and the screen
recording of the simulation environment. We extracted sections of
the data where the operator is conversing with one of the residents
directly. Table 1 shows an example of a resident interacting with
the operator. There were 104 such resident interactions (avr length
34.68 seconds) from all the subjects. The convincing rate among
these interactions was 85%. We divide the interaction period into
several segments based on the speaker tag. 2141 segments were
extracted from the interactions. Segments are either utterances or
silent periods. The two main speakers in the interaction windows
are the operator (34% of segments) and the resident (27% of seg-
ments), but occasionally we also have the spokesperson jump into
the conversation (13% of segments). The rest (26% of segments) are
silent segments.

Performance Metric. We use interaction length as a perfor-
mance metric since our experiment is designed to assess the opera-
tor’s ability to efficiently and quickly convince the residents. This
metric is defined for each interaction, measuring the operator’s per-
formance in that specific interaction. The length of the successful
interactions (resident convinced) represented a double Gaussian
distribution, separating the data into two major parts, therefore,
we chose to have 2 classes of successful interactions and one class
for unsuccessful interactions (resident not convinced) which rep-
resented close to a normal distribution; therefore categorizing our
data into 3 classes: “Successful-short” and “successful-long” each
makeup for 42.5%, and “unsuccessful” class for 15% of the data.

4 METHOD
4.1 Multimodal Feature Extraction
4.1.1 Visual Features. We use the OpenFace [2] toolkit to extract
raw features per frame from the operator’s video. The extracted
32-dimensional feature vectors including the estimated eye gaze
direction vector in 3D, head pose, and 17 Facial Action Units (AUs)
intensity [9] indicating the facial muscle movements. These visual
descriptors have been shown to be strong indicators of human emo-
tions and sentiments [31]. Therefore, we also extracted values for
six universal emotions [8] {anger, happiness, sadness, fear, disgust,
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Figure 2: Overall Architecture of Our Multi-Modal Information Infusion.

surprise} based on [23]. We also used VideoMAE, a model that has
been recently proposed by Tong et al. [33] as a data-efficient learner
for self-supervised video pre-training (SSVP). It is inspired by the
recent success of ImageMAE[14] and extended the masked autoen-
coders (MAE) to video, achieving state-of-the-art performance on
several video classification benchmarks. We use the pre-trained
VideoMAE model from huggingface to extract dense representation
of 1536-dimensional vectors for each frame of the operator’s videos.

4.1.2 Linguistic features. Audio recordings of the interactions were
transcribed using the Whisper model [24], and manually verified.
Two linguistic models, RoBERTa [19] and its fine-tuned version
RoBERTa-empathy [12], processed the text from segments, with
silent segments using an empty string as input. RoBERTa is a state-
of-the-art English language model based on transformers, while
RoBERTa-empathy is fine-tuned checkpoint of the DistilRoBERTA-
base model [28] trained on empathy and distress datasets, special-
ized for emotional content, rather than semantic information. The
models’ pre-trained weights are from huggingface [37], each pro-
ducing 768-dimensional contextualized embeddings per word. We
use mean-pooling to generate sentence-level representations.

4.1.3 Auditory Features. We extracted auditory features using two
state-of-the-art models. wave2vec [29] model explores unsuper-
vised pre-training for speech recognition, using a multi-layer convo-
lutional neural network that is optimized via a noise contrastive bi-
nary classification task. We use the pre-trained model weights from
huggingface to obtain the frame-by-frame auditory embeddings.
OpenSMILE [10] is an open-source software toolkit that enables
the extraction of features from audio signals. It is commonly used
in the classification of speech and music signals. OpenSMILE can
recognize the characteristics of a given speech or music segment,
such as a speaker’s emotion, age, gender, personality, depression,
intoxication, or vocal pathological disorders. We use OpenSMILE to

generate an auditory representation of the conversation between
operator and residents with a focus on affective-driven features.

4.2 Proposed Architecture
We developed a novel multimodal deep neural network architec-
ture (depicted in Figure 2) that integrates linguistic, auditory, and
visual features. The model utilizes pre-trained models fine-tuned
on our dataset for optimal performance. Inspired by conventional
architectures like Deng et al. [7], our model processes each modal-
ity as distinct channels, then integrates all the information into
a unified space before forwarding it to a classification layer. It
incorporates temporal information at two levels: segment and inter-
action, achieved through two layers of Long Short-Term Memory
(LSTM) networks applied to visual and auditory modalities. Lin-
guistic modality doesn’t require this temporal modeling due to its
less prominent temporal nature in this context.

Visual frames from each individual segment undergo processing
by both the VideoMAE and OpenFace models, resulting in feature
vectors of dimensions 1536 and 32 respectively. To compress the
dimensionality, a fully connected layer transforms VideoMAE’s
output into a 16-dimensional representation. The visual frame em-
beddings from both sources are then concatenated and fed into an
LSTM layer with a hidden layer size of 16, enabling the derivation of
visual segment-level embeddings. Sequences are then streamlined
by padding or truncating them to consist of 30 segments per video,
with each segment containing 64 frames (equal to 32 seconds).

In the auditory modality, we adopt a two-step approach to en-
code information into dense representations. Pre-trained models
are used to obtain embeddings, and for silent segments, an empty
voice is fed into the models. ForWave2vec input, audio files were re-
sampled to 16K FPS, with each frame resulting in a 32-dimensional
vector. Sequence preparation involves padding or truncation to
ensure 30 segments per video, each lasting 32 seconds. An LSTM
layer with a hidden size of 8 is used to generate a dense segment
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representation, similar to the video component. On the other hand,
OpenSmile generates a single 6373-dimensional vector per input
file, eliminating the need for pooling for segment-level represen-
tations. A fully connected layer compresses the information to an
8-dimensional representation.

To process the linguistic features, we also use two pre-trained
models to encode the information into dense representations. First
each transcribed sentence from each segment is encoded using
RoBERTa-base and RoBERTa-empathy models. For silent segments,
an empty string was given to the models as input. Then we use
mean pooling (instead of an LSTM) to amalgamate sentence-level in-
formation into segment-level representations. We use mean pooling
for two reasons: first, it reduces the overall count of trainable param-
eters and second, it is a widely adopted technique in NLP[17, 34].
For each set of encodings, we use a fully connected layer to com-
press and reduce the dimensionality of the information into an
8-dimensional representation.

After obtaining the multi-modal segment level representations,
in the last part of the model, we first concatenate information from
all modalities into one vector and add the speaker ID to respective
segments. Then we feed the resulting vector into an LSTM layer
to pool the segment-level information into a 16-dimensional repre-
sentation of the whole interaction. Finally, we feed this interaction
representation into a fully connected decision layer to predict the
user’s performance in the interaction.

5 RESULTS
We implemented the model explained in section 4.2 using the Keras
library[6]. To train our model, we utilized the interaction length
performance metric as our data label. As a result, the problem was
transformed into a 3-class classification task.

"Sparse categorical cross-entropy" was chosen as the loss func-
tion, while the Adam optimizer was employed to update the weights
during training iteratively. The model underwent 100 epochs of
training, and to prevent overfitting, an early stopping mechanism
was incorporated with a patience of 10 interactions. Early stopping
was triggered if the validation loss failed to improve beyond the
threshold of 1e-4. To assess the model’s performance, 4-fold cross-
validation with random shuffling with a “per-participant” basis was
performed, so no participants’ interaction data were included in
both train and test sets for the same experiment.

Within each fold, the validation accuracy and validation f1-macro
score were calculated, and the average values were reported. We
also conduct an ablation study to evaluate the effectiveness of
each of our modalities in our proposed prediction model where we
separately train the model using only one of the embedding sources.
We also tested two variations of our model: 1) affective: which
only uses the affective embedding sources (OpenFase, RoBERTa-
empathy, andOpenSMILE), and 2) generals: which only uses general
embedding sources (VideoMAE, RoBERTa, wave2vec).

Table 2 summarizes our proposed model’s accuracy and f1 score
results and its different variations. Our best model achieved an
accuracy of 73.08% and f1-macro score of 63.96% on the classifica-
tion task. Our findings demonstrate that the linguistic modality
contributes the most to the model’s performance, surpassing the au-
ditory and visual modalities. This observation is consistent with the

Table 2: Mean cross-validation accuracy and F1-Macro met-
rics for different modalities on the classification task. Models
with the (†) sign are affective models and others are general.

Modality Model Accuracy (%) F1-Macro (%)

Visual VideoMAE 45.19 41.17
OpenFace† 39.48 27.32

Linguistic RoBERTa 56.73 53.86
RoBERTa-empathy† 50.00 41.37

Auditory wave2vec 40.38 29.92
OpenSMILE† 33.65 16.77

Multimodal
generals 57.69 46.46
affectives† 55.56 50.58
Full 73.08 63.96

Random 33.65 16.78

results reported in other studies[13, 18, 20, 32]. Furthermore, our
results indicate that the combination of general models outperforms
the combination of more specialized models trained on affective
datasets. This finding suggests that, despite not being specifically
fine-tuned for this particular task, the large-scale training data of
general models provides them with enough implicit knowledge to
perform adequately on a behavior analysis-based task. These results
offer possibilities for future research into the optimal combination
of modalities for behavior analysis and suggest that general models
may provide an effective starting point for this investigation.

6 CONCLUSION & FUTURE DIRECTIONS
We explore the user’s interaction with a simulation environment
in a high-stress context wherein users (operators) must rescue vir-
tual characters (residents) from a simulated wildfire that is rapidly
approaching a simulated town. Operators must engage in dialogue
with the residents to convince them to flee and to arrange their
escape methods. We developed a deep neural network model to
predict the user’s performance using the multimodal information
extracted from the recordings. We categorize the performance as
one of the three classes of “successful-short”, “successful-long” and
“unsuccessful”. The model processes the interaction in two levels
each with an LSTM layer. The first level encodes the temporal di-
mensions of each segment within the interaction and the second
level incorporates the interaction dynamics across multiple seg-
ments. Our best model achieved a 73.08% accuracy on our dataset.

Future directions involve exploring the relationship between dif-
ferent personality types of characters and user’s performance/user’s
emotional expressions, exploring the effects of user’s personality
on task performance, and looking at different persuasion strategies
used by the operator. Other directions would be exploring different
architectures such as incorporating late-fusion methods to compare
them with our early-fusion method.
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